Fluid flows created by swimming bacteria drive self-organization in confined suspensions.

نویسندگان

  • Enkeleida Lushi
  • Hugo Wioland
  • Raymond E Goldstein
چکیده

Concentrated suspensions of swimming microorganisms and other forms of active matter are known to display complex, self-organized spatiotemporal patterns on scales that are large compared with those of the individual motile units. Despite intensive experimental and theoretical study, it has remained unclear the extent to which the hydrodynamic flows generated by swimming cells, rather than purely steric interactions between them, drive the self-organization. Here we use the recent discovery of a spiral-vortex state in confined suspensions of Bacillus subtilis to study this issue in detail. Those experiments showed that if the radius of confinement in a thin cylindrical chamber is below a critical value, the suspension will spontaneously form a steady single-vortex state encircled by a counter-rotating cell boundary layer, with spiral cell orientation within the vortex. Left unclear, however, was the flagellar orientation, and hence the cell swimming direction, within the spiral vortex. Here, using a fast simulation method that captures oriented cell-cell and cell-fluid interactions in a minimal model of discrete particle systems, we predict the striking, counterintuitive result that in the presence of collectively generated fluid motion, the cells within the spiral vortex actually swim upstream against those flows. This prediction is then confirmed by the experiments reported here, which include measurements of flagella bundle orientation and cell tracking in the self-organized state. These results highlight the complex interplay between cell orientation and hydrodynamic flows in concentrated suspensions of microorganisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic flow actuation using magnetoactive suspensions

The rheological behavior of magnetotactic bacterial suspensions is analyzed using a continuum kinetic theory. In both unbounded and confined geometries, the response of these suspensions under simple external flows can be controlled by applying a magnetic field and hinges in a subtle way on the interplay of magnetic alignment, rotation under shear, and wall-induced accumulation under confinemen...

متن کامل

Kinetic models of swimming bacteria in semi-dilute limit Project: Coarse-graining techniques for modeling highly heterogeneous complex biomaterials

Bacteria are the most abundant organisms on Earth and they significantly influence carbon cycling and sequestration, decomposition of biomass, and transformation of contaminants in the environment. Therefore, an understanding of the basic principles of bacterial behavior and its control is of natural importance to the DOE mission. With this in mind, we have conducted analytical, numerical and e...

متن کامل

Modeling of collective swimming of bacteria

Bacteria are the most abundant organisms on Earth and they significantly influence carbon cycling and sequestration, decomposition of biomass, and transformation of contaminants in the environment. This motivates our study of the basic principles of bacterial behavior and its control. We have conducted analytical, numerical and experimental studies of suspensions of swimming bacteria. In partic...

متن کامل

Collective chemotactic dynamics in the presence of self-generated fluid flows.

In microswimmer suspensions locomotion necessarily generates fluid motion, and it is known that such flows can lead to collective behavior from unbiased swimming. We examine the complementary problem of how chemotaxis is affected by self-generated flows. A kinetic theory coupling run-and-tumble chemotaxis to the flows of collective swimming shows separate branches of chemotactic and hydrodynami...

متن کامل

Using confined bacteria as building blocks to generate fluid flow.

In many technological applications, materials are transported by fluid flow at micro/nanometer scales. Conventionally, macroscopic apparatuses, such as syringe pumps, are used to drive the flow. This work explores the possibility of utilizing motile bacteria as microscopic pumps. We used micro-fabricated structures to confine smooth-swimming bacteria in a prescribed configuration. The flagella ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 27  شماره 

صفحات  -

تاریخ انتشار 2014